Influence of synaptic plasticity on dynamics of neural mass model:a bifurcation study

Author:

Xia Xiao-Fei ,Wang Jun-Song , ,

Abstract

Neural mass model is a typical nonlinear system with rich and complex dynamics. Up to now, most bifurcation researches of neural mass model (NMM) have focused on the influence of input or connection parameters between subpopulations on the dynamics of NMM. Actually, the synaptic strength is varied temporally, owing to synaptic plasticity, and plays a crucial role in regulating the dynamics of NMM. However, there are no researches on synaptic strength bifurcation analysis of NMM, and how excitatory and inhibitory synaptic plasticity exerts an influence on the dynamics of NMM is still little known. Motivated by this idea, the bifurcation analysis of excitatory and inhibitory synaptic strength of NMM is conducted in this study. Firstly, codimension-one bifurcation analyses of excitatory and inhibitory synaptic strengths are performed, respectively, through which the parameters regions of stability, bistablility, normal and abnormal oscillation are determined. Secondly, codimension-two bifurcation analysis is conducted, through which we can further gain an insight into the influence of the interaction between excitatory and inhibitory synaptic strengths on the dynamics of NMM. Finally, the bifurcation analysis results is verified by the simulation results. This study of bifurcation reveals two kinds of oscillation mechanisms: limit cycle oscillation mechanism and input-induced transition between two states of the bistability.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3