Error analysis and reconstruction for diffractive optic imaging spectrometer using the multiple iterations

Author:

Li Na ,Jia Di ,Zhao Hui-Jie ,Su Yun ,Li Tuo-Tuo , ,

Abstract

Diffraction imaging spectrometer cannot acquire imaging spectral data without calculation and inversion. In this paper, the imaging process of the diffraction imaging spectrometer and the principle of the data error from both space and spectra are analyzed. To solve the problems of low definition of the reconstruction and the ringing in it occurring under the condition that the point spread function (PSF) is larger, a new algorithm is proposed based on improved inverse Wiener filtering. The improved method regards the reconstruction result of Wiener filtering as a new fuzzy image, and recalculates the PSF of the new fuzzy image based on the analysis of the diffraction characteristics and error. Inverse iterative Wiener filtering is used to improve the definition of the reconstruction, and then the noise needs to be removed according to the distribution of the spatial and spectral features. Simulated diffraction imaging spectral data are used to verify the correctness of the algorithm proposed in this paper. A reconstruction without ringing can be obtained when the standard deviation of PSF is 2.5, and both of the definition and detail ability are higher than those of the traditional reconstruction. The reconstruction using the improved algorithm proposed in this paper can satisfy the applications of the diffraction imaging spectral data.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference39 articles.

1. Du H D, Huang S X, Shi H Q 2008 Acta Phys. Sin. 57 7685 (in Chinese)[杜华栋, 黄思训, 石汉青 2008 物理学报 57 7685]

2. Chen S, Ong Y H, Liu Q 2012 Proc. SPIE 8553 85531R

3. Valdivieso L G, Osorio C A, Guerrero J E 2011 22nd Congress of the International Commission for Optics 80119P

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3