Simulation of erosion of the tungsten wall by impurities in the divertor plasma

Author:

Sun Zhen-Yue ,Sang Chao-Feng ,Hu Wan-Peng ,Wang De-Zhen ,

Abstract

Divertor is a component that directly contacts the plasma in tokamak. To ensure the lifetime of the device, it is necessary to reduce the erosion of the divertor wall by plasma. In this work, a particle-in-cell model is used to study the influences of plasma temperature and impurity concentration on the erosion of tungsten divertor wall by carbon and beryllium ions. The steady-state sheath, particle and energy fluxes to the wall, and the energies and angle of the incident ions can be obtained. Then, these data can be used as the input parameters for the plasma-surface interaction model, to evaluate the erosion rate of the plate based on the empirical formulas for physical sputtering. It is found that the erosion by heating plays a negligible role under the plasma condition of this work. Due to the low physical sputtering threshold energy of tungsten by impurities and the impurity ions accelerated by sheath, the physical sputtering of the tungsten by the impurities plays an dominant role in the total erosion. In addition, the erosion rate increases with the increase of plasma temperature and impurity concentration.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3