Construction of a circulant compressive measurement matrix based on chaotic sequence and RIPless theory

Author:

Guo Jing-Bo ,Wang Ren ,

Abstract

Construction of a compressive measurement matrix is one of the key technologies of compressive sensing. A circulant matrix corresponds to the discrete convolutions with a high-speed algorithm, which has been widely used in compressive sensing. This paper combines the advantages of chaotic sequence with circulant matrix to propose a circulant compressive measurement matrix based on the chaotic sequence. The elements of a chaotic circulant measurement matrix are generated by taking advantage of the chaotic internal certainty, i.e. the independent identically distributed randomness sequence can be produced by the chaotic mapping formula using the initial value and a certain sampling distance. At the same time, the external randomness of chaotic sequence can satisfy the stochastic requirements of compressive measurement matrix. This paper presents the method of constructing chaotic circulant measurement matrix using a Cat chaotic map and the test method for RIPless property of the matrix. Measurement results of one-dimensional and two-dimensional signals using the chaotic circulant measurement matrix are studied and are compared with the results of conventional circulant measurement matrix. It can be shown that the chaotic circulant measurement matrix has good recovery results for both one-dimensional and two-dimensional signals. Moreover, it may get better results than the traditional matrix for the two-dimensional signal. From the point of view of phase diagram, the essential reason of chaotic circulant measurement matrix outperforms the conventional one is its integration of internal certainty with the external randomness of the chaotic sequence.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3