Efficient simulation of three-dimensional marine controlled-source electromagnetic response in anisotropic formation by means of coupled potential finite volume method

Author:

Zhou Jian-Mei ,Zhang Ye ,Wang Hong-Nian ,Yang Shou-Wen ,Yin Chang-Chun , , ,

Abstract

A coupled potential finite volume method for simulation of three-dimensional marine controlled-source electromagnetic (CSEM) response in anisotropic formation is developed. To circumvent ill-conditioning and convergence problems, Maxwell's equations are reformulated into coupled scalar-vector potentials with Coulomb gauge and its complement by applying a Helmholtz decomposition to the electric field. Yee's staggered girds, finite volume averaging and interpolation techniques are used to make the Helmholtz equations discrete. The resulting sparse and complex linear system in large-scale models is solved by a direct solver PARDISO. In order to improve the accuracy of the near field results without significantly reducing the computational efficiency, a method using difference fields is proposed to reduce the source singularity effect of anisotropic formation. The anisotropic modeling examples show that marine CSEM response is predominantly sensitive to reservoir vertical resistivity, not to reservoir horizontal resistivity, provided that the reservoir are thin and high-resistive; but the marine CSEM response is sensitive to both horizontal and vertical resistivity of the overburden on top of the reservoir.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference55 articles.

1. Constable S 2010 Geophysics 75 75A67

2. Eidesmo T, Ellingsrud S, MacGregor L M, Constable S, Sinha M C, Johansen S, Kong F N, Westerdahl H 2002 First Break 20 144

3. Chimedsurong Z, Wang H N 2003 Chin. J. Comput. Phys. 20 161 (in Chinese) [Z其木苏荣, 汪宏年 2003 计算物理 20 161]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3