Atomic force microscopy studies on self-organized wrinkles in constrained metallic films deposited on silicone oil substrates

Author:

Yu Sen-Jiang , ,

Abstract

Silicone oil droplets with varied sizes (micrometer to millimeter) were sprayed onto a clean glass slide and then Cr films were deposited on the droplets by DC-magnetron sputtering. Self-organized wrinkles induced by thermal stress have been investigated using atomic force microscope. It is found that the Cr films are limited by the droplet edges and thus possess constrained edges, which can well control the wrinkle morphologies: the wrinkles may exhibit radiated strips perpendicular to the edge. The wavelength and amplitude will decrease when approaching to the constrained edge. Morphologies of the wrinkles are closely related to the film thickness and oil drop size. As the film thickness increases, the wrinkles first form near the edge, and then propagate to the central region. The wavelength at the droplet center is almost unchanged for different oil sizes, but the amplitude first increases and then decreases with increasing film thickness. When the film thickness is fixed, the wavelength and amplitude may increase accordingly with increasing droplet size. Further studies show that the top surface of the silicone oil is modified to form a polymer layer during the deposition due to the bombardment from high-energy particles and heat radiation from the sputtering source. Morphologies of the wrinkles and amplitude evolutions are then explained in detail.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3