Low threshold distributed feedback laser based on scaffolding morphologic and holographic polymer dispersed liquid crystal gratings

Author:

Liu Li-Juan ,Huang Wen-Bin ,Diao Zhi-Hui ,Zhang Gui-Yang ,Peng Zeng-Hui ,Liu Yong-Gang ,Xuan Li , ,

Abstract

We have made a low scattering holographic polymer dispersed liquid crystal (HPDLC) transmission grating with polymer scaffolding morphology, which was fabricated under the condition of low curing intensity and no liquid crystal droplet. We studied the amplified spontaneous emission (ASE) thresholds and relative intensities of PM567(4, 4-difluoro-1, 3, 5, 7, 8-pentamethyl-2, 6-diethyl-4-bora-3a, 4a-diaza-s-indacene), DCM (4-Dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran), and DCJTI(4-dicyanomethylene)-2-isopropyl-6-(1, 1, 7, 7-tetramethylzulolidyl-9-enyl)-4H-pyran). It is shown that the dye DCJTI has the best properties of ASE, the lowest threshold and the highest relative intensity among the three dyes. Results suggest that DCJIT is a promising material for low threshold, high slope efficiency lasers. Each dye was doped in HPDLC grating with polymer scaffolding morphology individually, and lasers with different wavelengths can be obtained by changing the period of the gratings. The excellent laser property is obtained from the DCJIT-doped laser. A spectral linewidth of 0.3 nm is observed at pump energy threshold 0.65 J/pulse and a conversion efficiency of 1.6% is achieved at the operating wavelength 635 nm. The laser performance is improved in some aspects such as threshold energy, conversion efficiency, and linewidth to some extent as compared with those reported previously.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3