Plateau surface energy balance components and interannual variability in response to climate fluctuations

Author:

Xia Lu ,Zhang Qiang , , ,

Abstract

In this paper land surface observations and meteorological data are received from Semiarid Climate and Environment Observatory of Lanzhou University (SACOL) and Yuzhong Station from 2006 to 2012. The climate changes of temperature and precipitation in the seven years are analyzed in Yuzhong, and the inter-annual variation of the components of surface energy balance in land surface is discussed. The Bowen ratio and the energy inter-annual fluctuation imbalance are also studied. Explorations of surface energy balance components as well as the land surface process parameters feedback on the temperature, precipitation interannual fluctuations on the Loess Plateau are carried out. Results show that the surface energy components are responsible to the fluctuations of the climate background. But the sensitivity varies; the net radiation and air temperature are more relevant to each other, and the sensible heat and latent heat have a better correlation with precipitation. Discussions are divided into summer and winter half year results, in which the winter half year balance component surface has a better correlation with climatic fluctuations. In the winter half year, each component has a high degree of correlation with temperature, showing that in this area each component of the land surface energy balance component corresponding to the change of temperature is more remarkable The rising trend of Bowen ratio is corresponding to the reduction of precipitation, indicating that the drought is deepened The change of the energy closure shows that the deepening of energy balance unclosure is due to the change of the climate background.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3