Simulation study of effects of initial melt temperature on microstructure of liquid metal Na during solidification processes

Author:

Hou Zhao-Yang ,Liu Rang-Su ,Wang Xin ,Tian Ze-An ,Zhou Qun-Yi ,Chen Zhen-Hua ,

Abstract

Molecular dynamics simulation study has been performed on the effects of thermal history of initial melt temperature on microstructures during solidification of liquid metal Na. The pair distribution function g(r) curves, the bond-type index method and the cluster-type index method have been used to analyze the variations of microstructures during the solidification process. The results show that the solidification structures of liquid metal Na at the cooling rate of 1×1011 K/s with different initial melt temperatures are always crystalline. The 1661 and 1441 bond-types or the bcc basic cluster (14 6 0 8) in the system play the critical role in the microstructure transitions. At the same time, it has been found that the effects of initial melt temperature on solidification microstructures are very remarkable, while they are not obvious in liquid and supercooled states, and the effects can be fully displayed only near the crystallization temperature Tc. The results also demonstrate that the effects of initial melt temperature on the crystallinity of solidification structures are different for different initial melt temperatures. Although the degree of influence is not linearly varying with the decrease of initial melt temperature, it still demonstrate that the influence degree can be controlled through the change of initial melt temperature. The cluster-type index method more clearly describes the cluster configurations in crystal system than the bond-type index method, so it is valuable to deeply investigate the evolution mechanisms of microstructures in liquid metal during solidification processes.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3