Optimization of GaAs (110) quantum well material growth technology by reflection high energy electron diffraction

Author:

Liu Lin-Sheng ,Liu Su ,Wang Wen-Xin ,Zhao Hong-Ming ,Liu Bao-Li ,Jiang Zhong-Wei ,Gao Han-Chao ,Wang Jia ,Huang Qing-An ,Chen Hong ,Zhou Jun-Ming ,

Abstract

Recently, there is an increasing interest in the molecular beam epitaxy growth of various high quality heterostructures on the nonpolar GaAs(110) surface for the unique properties which arise from this unconventional orientation. Considering that the Ga and As atoms are coplanar in GaAs(110) surface, the range of bestgrowth temperature is small. It is difficult to find the best growth condition by observing the change of reflection high energy electron diffraction (RHEED) pattern because this kind of (1×1) RHEED pattern is insensitive to growth temperature and V/III beam equivalent pressure ratio. In the process of the GaAs(110) quantum well growth, we observed the single and double period variation of oscillation of RHEED intensity. This implies that there are two growth modes (monolayer-by-monolayer and bilayer-by-bilayer) of GaAs quantum wells growing on the GaAs (110) substrate under different growth conditions. The measurements of transmission electron microscopy and photoluminescence at room temperature showed that the quantum wells have very bad optical property under the bilayer_by_bilayer growth mode, while the quantum wells grown under the monolayer-by-monolayer growthmode have much better optical property with rough interfaces. By means of RHEEDoscillations, high quality quantum wells have been grown on GaAs (110) substrate under optimized growth conditions.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3