Effects of the technology of implanting nitrogen into buried oxide layer on the characteristics of partially depleted SOI nMOSFET

Author:

Zheng Zhong-Shan ,Liu Zhong-Li ,Zhang Guo-Qiang ,Li Ning ,Fan Kai ,Zhang En-Xia ,Yi Wan-Bing ,Chen Meng ,Wang Xi ,

Abstract

The effects, caused by the process of the implantation of nitrogen in the buried oxide layer of SIMOX wafer, on the characteristics of partially depleted silicon_on_insulator nMOSFET have been studied. The experimental results show that the channel electron mobilities of the devices fabricated on the SIMON (separation by implanted oxygen and nitrogen) wafers are lower than those of the devices made on the SIMOX (separation by implanted oxygen) wafers. The devices corresponding to the lowest implantation dose have the lowest mobility within the range of the implantation dose given in this paper. The value of the channel electron mobility rises slightly and tends to a limit when the implantation dose becomes greater. This is explained in terms of the rough Si/SiO2 interface due to the process of implantation of nitrogen. The increasing negative shifts of the thre shold voltages for the devices fabricated on the SIMON wafers are also observed with the increase of implanting dose of nitrogen. However, for the devices fabri cated on the SIMON wafers with the lowest dose of implanted nitrogen in this pap er, their threshold voltages are slightly larger on the average than those prepa red on the SIMOX wafers. The shifts are considered to be due to the increment of the fixed oxide charge in SiO2 layer and the change of the density of the int erface-trapped charge with the value and distribution included. In particular, t he devices fabricated on the SIMON wafers show a weakened kink effect, compared to the ones made on the SIMOX wafers.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3