The study of structure characteristics of GeTe and GeSe molecules under the external electric field

Author:

Huang Duo-Hui ,Wang Fan-Hou ,Cheng Xiao-Hong ,Wan Ming-Jie ,Jiang Gang , ,

Abstract

Equilibrium structures of the GeTe and GeSe ground state molecules are obtained by employing the local spin density approximation method with 6-311++G** basis sets for Ge and SDB-cc-pVTZ for Te and Se. Also obtained are the equilibrium geometry, the highest occupied molecular orbital(HOMO) energy level, the lowest unoccupied molecular orbital(LUMO)energy level, the energy gap, the harmonic frequency and the infrared intensity of GeTe and GeSe ground state molecules under different electric fields. On the basis of the above calculation, the excited states of GeTe and GeSe molecules under different electric fields are also investigated by using the single-excitation configuration interaction-local spin density approximation method. The results show that the equilibrium internuclear distance and the intensity of infrared are found to increase, but the total energy and harmonic frequency are proved to decrease with the increase of positive direction electric field. The HOMO energy EH of GeTe molecule is higher than that of GeSe molecule under electric fields ranging from 0 to 2.05691010 V m-1. For GeTe and GeSe molecules, their difference in EH gradually increases with the increase of positive direction electric field. The LUMO energy EL of GeTe molecule is lower than that of GeSe molecule, and their LUMO energies are found to increase with the increase of positive direction electric field. The energy gap of GeTe is low than that of GeSe, and their energy gaps always decrease with the increase the negative direction electric field. The magnitude and the direction of the external electric field have important effects on excitation energy, oscillator strength and wavelength.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference41 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3