Mechanism of the influence of the interaction between interstitial H atom and doped atom on the dehydrogenation performance of LiNH2
-
Published:2011
Issue:11
Volume:60
Page:117101
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Lu Guang-Xia ,Zhang Hui ,Zhang Guo-Ying ,Liang Ting ,Li Dan ,Zhu Sheng-Long , ,
Abstract
The first-principles plane-wave pseudopotential method based on the density functional theory is used to investigate the mechanism of the influence of interaction between interstitial H atom defect and doped atom on the dehydrogenation performance of LiNH2. We obtain the most stable structure of LiNH2 by geometrical optimization, and calculate the binding-energies, interstitial H atom defect formation energies, densities of states (DOSs), and electric charge populations for LiNH2 and doped LiNH2. Studies show that the results of binding-energy cannot reflect the dehydrogenating properties of LiNH2 and doped LiNH2. In equilibrium, there are a number of interstitial H atom defects; the formation energy of interstitial H atom defect is reduced by doping Mg and Ti, which increases the concentration of interstitial H atoms. Interstitial H atoms can induce the defect energy level in the gap, which reduces the width of the gap, and improves the dehydrogenation performance of LiNH2. The strength of N-H bond in [NH2]- is weakened by interstitial H atom, so that hydrogen atoms in LiNH2 is relatively easy to release. The covalent bond between interstitial H atom and N atom of [NH2]- explains the escape of NH3 from the dehydrogenation reaction of LiNH2 system. The strengths of N-H bonds are not equal in doped LiNH2, a part of N-H bonds are weaker, and other N-H bonds are strong, the hydrogen atoms are easy to release from weaker N-H bonds.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Reference31 articles.
1. Lei Y Q 2000 New Energy Materials(Tianjin:Tianjin University Press)p28 (in Chinese) [雷永泉 2000 新能源材料 (天津:天津大学出版社) 第28页]
2. Schlapbach L, Zttel A 2001 Nature 414 353
3. Li S M, Huang Z P 1996 Vacuum and Cryogenics 2 149 (in Chinese) [李式模、黄忠平 1996 真空与低温 2 149]
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献