Formation mechanism of layered microstructure and monotectic cell within rapidly solidified Fe62.1Sn27.9Si10 alloy

Author:

Li Zhi-Qiang ,Wang Wei-Li ,Zhai Wei ,Wei Bing-Bo ,

Abstract

Ternary Fe62.1Sn27.9Si10 monotectic alloy is rapidly solidified in drop tube with the freely-falling-body techniqual and with melt spinning method separately. The phase separation, the microstructure characteristics, and the heat transfer of this alloy are investigated theoretically. Under free fall condition, the core-shell structure with two layers is formed because of Marangoni migration and surface segregation, where the Sn-rich phase is always located at droplet surface and the Fe-rich phase in the center. With the decrease of droplet diameter, both cooling rate and temperature gradient increase quickly, which facilitates the rapid growth of monotectic cell. With the increase of wheel speed, the cooling rate of alloy ribbon increases from 1.1107 to 6.5107 K/s, the fluid flow and the phase separation are suppressed to a great extent, and the nine layers two layers no layer structural transition occurs during the rapid solidification of Fe62.1Sn27.9Si10 alloy obtained by the melt spinning method. Meanwhile, the FeSn+L2FeSn2 peritectic transformation is also suppressed, thus resulting in different phase constitutions as compared with the case of free fall condition. The energy dispersive spectroscopy (EDS) analysis reveals that the Fe phase exhibits a conspicuous solute trapping effect during rapid solidification.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3