Effect of pro-proximity pulse voltage on the third-generation low light level image intensifiers halo effect

Author:

Ren Ling ,Shi Feng ,Guo Hui ,Cui Dong-Xu ,Shi Ji-Fang ,Qian Yun-Sheng ,Wang Hong-Gang ,Chang Ben-Kang , , ,

Abstract

In order to explore the proper working voltage for the third-generation low light level image intensifier, the influence of pro-proximity pulse voltage on image intensifier halo effect is investigated. The pulse voltage is applied to photocathode of image intensifier. Respectively change the high and low level voltage and duty ratio, image intensifier halo images are collected by high-resolution charge-coupled device (CCD). The gray distributions for pixel points on halo image central line are given and comparatively analyzed. The results show that as high level voltage and duty ratio increase, the number of pixel points whose gray value is 255 increases and the border between signal and background becomes clear. When high level voltage is above 200 V and duty ratio is above 60%, the pro-proximity voltage has not great influence on image intensifier halo effect. When low level voltage is above 2 V, photoelectrons escaping from photocathode cannot reach microchannel plate under low level voltage stage. The present investigation is beneficial to the exploration of the optimal working voltage for image intensifier and energy range of photoelectrons escaping from photocathode, and provides an experimental support for the improvement of the third-generation low light level image intensifier performance.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3