The variation features of the surface mixed layer depth in Erhai Lake and Taihu Lake in spring and autumn and their mechanism analyses

Author:

Zhao Qiao-Hua ,Sun Ji-Hua , , , ,

Abstract

The variation of the surface mixed layer depth may affect not only the evolution of aquatic ecosystem, but also the temporal-spatial distribution of precipitation and climate in the basin. Based on the meteorological data and water temperature profiles observed in Erhai Lake (located in the Tibetan Plateau) and Taihu Lake (located in the Taihu Plain), the variation features and the mechanisms of the surface mixed layer depths are investigated. The stratification in Erhai Lake can be established and sustained in summer; the diurnal stratification in Erhai Lake can also be established, However, in both summer and autumn, stratification may exist in Taihu Lake. The time length of stratification is longer in Erhai Lake than that in Lake Taihu in the autumn. And the surface mixed layer depths in Erhai Lake are shallower than those in Taihu Lake in summer and autumn. The transformation frequency between establishment and destruction of stratification in Taihu Lake is faster than that in Erhai Lake, which illustrated that the response of water body in Taihu Lake to atmospheric variation is quicker than that in Erhai Lake. The water depth is a key factor which prevents such shallow lakes as Taihu Lake from establishing and maintainaning stratifications and in a suitable radiation condition the stratification will exist. The net radiation is a key factor that determines the stratification and the length of the time when the stratification can be sustained in lakes whose depths are the same as that of Erhai Lake. The research result in this paper is helpful for exploring the coupling mechanism of the turbulence of water and air and the evolution law of aquatic ecosystem.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3