Decoherence effect of target roughness in synthetic aperture ladar

Author:

Dang Wen-Jia ,Zeng Xiao-Dong ,Feng Zhe-Jun ,

Abstract

Optical heterodyne detection is one of the key techniques for developing synthetic aperture ladar. The decoherence effect caused by the roughness of the target surface is particularly important for the practical use of the synthetic aperture ladar. The effect of the target surface roughness on the echo signal detection is discussed in the paper. One-dimensional and two-dimensional Gaussian random rough surface model are created by the use of the Monte Carlo method. The detection process of the target echo signal is simulated to study the effect of the target surface roughness on the intermediate frequency signal. And two optical heterodyne detection experiments are conducted in which the targets each include a rough surface and a smooth surface to verify the serious decoherence effect of the target roughness on the synthetic aperture laser radar echo signal. Meanwhile, the wavefronts of both the local oscillator and the signal beam are monitored at the position of the detector with a digital wavefront analyzer. The measured phase distribution accords well with the simulation result. It is shown that the phase of the echo signal from a rough surface has a serious distortion. The results obtained could be useful for designing the parameters of the laser source and the receiver, as well as for estimating the detection range of the ladar system.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3