The Effect of DC degradation and heat-treatment on defects in ZnO varistor

Author:

Zhao Xue-Tong ,Li Jian-Ying ,Jia Ran ,Li Sheng-Tao ,

Abstract

In this research, DC degradation for ZnO varistors at 3.2 kV/cm and 50 mA/cm2 for 115 hours was performed, and its effect on electrical properties and defects of ZnO varistors was investigated. It was found that the breakdown field and nonlinear coefficient drops sharply from 2845 V/cm to 51.6 V/cm and 38.3 to 1.1, respectively, when the DC degradaion time reaches 115 hours. For the degraded sample, the dielectric loss was dominated by the increase of conductivity so that some defect relaxation peaks cannot be observed is the DC degraded ZnO varistors. However, in electrical modulus plot, one relaxation peak can be observed. The conductivity in low frequency range increases greatly and the conductance activation energy drops from 0.84 to 0.083 eV. Additionally, the heat-treatment process of ZnO varistors at 800 ℃ for 24 hours was also performed. It is interesting to note that the electrical properties and the relaxation processes of ZnO varistor is restorable completely again after heat-treatment. The breakdown field and the nonlinear coefficient increase to 3085 V/cm and 50.8, respectively, and the activation energy of conductance increases to 0.88 eV. It is also found that the defect relaxation peak, which is shown in dielectric spectra corresponding to oxygen vacancy defect, is suppressed evidently by heat-retreating. Therefore, it is proposed that oxygen is likely to diffuse into the ZnO grain boundaries at the heat-treatment process, which can play an important role in restorability of the DC degraded ZnO varistor.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference20 articles.

1. Gupta T K, Straub W D 1989 J. Appl. Phys. 66 6132

2. Xu D, Shi L Y, Wu Z H, Zhong Q D, Wu X X 2009 J. Eur. Ceram. Soc. 29 1789

3. Zhao K Y, Zeng H R, Li G R, Song H Z, Cheng L H, Hui S X, Yin Q R 2009 Chin. Phys. Lett. 26 100701

4. Li S T, Yang Y, Zhang L, Cheng P F, Li J Y 2009 Chin. Phys. Lett. 26 077201

5. Zhao X T, Li J Y, Li H, Li S T 2012 Acta Phys. Sin. 61 153103 (in Chinese) [赵学童, 李建英, 李欢, 李盛涛 2012 物理学报 61 153103]

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3