Author:
Zhang Xiao-Fang ,Chen Xiao-Ke ,Bi Qin-Sheng ,
Abstract
Based on the classical Chua's circuit, a four-dimensional Generalized Chua's circuit with multiple interfaces is established by introducing feedback elements. For the appropriate condition, there exists a difference in order of magnitude between the variables of state and a fast-slow coupled system, thereby forming a fast- and slow-coupled system at time scale. Analyzing the equilibrium points and the characteristics of the fast subsystems, and combining the theory of Clarke differential inclusions, the singularities on the non-smooth boundaries are explored. Two types of periodic bursting phenomena for different conditions are presented. Fast-slow analysis is employed to explore the special cluster phenomenon while the system trajectory passes across multiple interfaces. The coexisting different bursting mechanisms for the case with multiple attractors are explored in detail, while the influence of non-smooth bifurcations on bursting behavior is revealed.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献