Preparation and thermoelectric properties of Ag-ZnO nanocomposites synthesized by means of sol-gel

Author:

Wu Zi-Hua ,Xie Hua-Qing ,Zeng Qing-Feng ,

Abstract

Zinc oxide (ZnO) has attracted increasing attention as one of the most promising n-type thermoelectric materials. Although ZnO has been screened for high power factor, the ZT results were discouraging for its high thermal conductivity. Preparing nanocomposite is an effective way to reduce the thermal conductivity. The Ag-ZnO nanocomposites were synthesized by means of sol-gel method and their thermoelectric properties were investigated. Their XRD pattern and SEM miro graphs show that Ag nanoparticles are mainly lecated at the grain boundary of ZnO. Increasing Ag content leads to a significant decrease in absolute value of Seebeck coefficient (|S|). The electrical conductivity increases with increasing Ag content, while the thermal conductivity of Ag-ZnO nanocomposites is much lower than the bulk ZnO sample. The highest ZT (0.062) is found for 7.5 mol% Ag@ZnO nanocomposite at 750 K, thirty-five times of that of bulk ZnO. Since the Ag-ZnO junction leads to charge redistribution, the deflexed energy band obtained for ZnO should facilitate the electron transfer across the interface and thus accelerates the mobility of charge carriers. Thus increasing mobility of charge carriers would lead to the increase in electrical conductivity and a decrease in Seebeck coefficient. The difference of thermal conductivity comes from the lattice thermal conductivity. Due to the high density of interfaces and grain boundaries present in the nanocomposites, the scattering of phonons across a broad wavelength spectrum is enhanced. This suppresses the lattice thermal conductivity of the nanocomposites significantly.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3