Microcalcification clusters processing in mammograms based on relevance vector machine with adaptive kernel learning

Author:

Yao Chang ,Chen Hou-Jin ,Yang Yong-Yi ,Li Yan-Feng ,Han Zhen-Zhong ,Zhang Sheng-Jun , ,

Abstract

Using the method of adaptive kernel learning based relevance vector machine (ARVM) and combining the morphological filtering and the clustering criterion recommended by Kallergi, a new algorithm for microcalcification (MC) clusters processing in mammograms is investigated. Firstly, the detection of MC is formulated as a supervised-learning problem. Then the ARVM is used as a classifier to determine whether an MC object is present at each location in the mammogram and a morphological processing is used to remove the isolated spurious pixels. Finally, the identified MC clusters are obtained by Kallergi criterion. To improve the computational speed, a fast processing method based on ARVM is developed, in which the whole image is decomposed first into sub-image blocks for parallel operation. Experimental results indicate that the ARVM method outperforms the RVM method and, in particular, the fast processing method could greatly reduce the testing time.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference20 articles.

1. Ahmed M H, Magda E 2011 IEEE Reviws in Biomedical Engineering 4 103

2. Zhang X S, Gao X B, Wang Y, Zhang S J 2010 J. Infrared Millim Waves 29 27 (in Chinese) [张新生, 高新波, 王颖, 张士杰 2010 红外与毫米波学报 29 27]

3. Liu G D, Zhang Y R 2011 Acta Phys. Sin. 60 074303 (in Chinese) [刘广东, 张业荣 2011 物理学报 60 074303]

4. Xiang L Z, Xing D, Guo H, Yang S H 2009 Acta Phys. Sin. 58 4610 (in Chinese) [向良忠, 邢达, 郭华, 杨思华 2009 物理学报 58 4610]

5. Zhang H 2004 Acta Phys. Sin. 53 2515 (in Chinese) [张航 2004 物理学报 53 2515]

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3