Author:
Li Yong-Qiang ,Zhang Chen-Hui ,Liu Ling ,Duan Li ,Kang Qi , ,
Abstract
The capillary flow in a circular tube under microgravity environment is investigated by the homotopy analysis method (HAM), and the approximate analytical solution in the form of series solution is obtained. Different from other analytical approximate methods, the HAM is totally independent of small physical parameters, and thus it is suitable for most nonlinear problems. The HAM provides us a great freedom to choose basis functions of solution series, so that a nonlinear problem can be approximated more effectively, and it adjusts and controls the convergence region and the convergence rate of the series solution through introducing auxiliary parameter and the auxiliary function. The HAM hews out a new approach to the analytical approximate solutions of capillary flow in a circular tube. Through the specific example and comparing homotopy approximate analytical solution with the numerical solution which is obtained by the fourth-order Runge-Kutta method, the computed result indicate that this method has the good computational accuracy.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献