Author:
Zheng Xiao-Qing ,Yang Yang ,Sun De-Yan ,
Abstract
Using molecular dynamics simulations, we investigate the structure and transport properties of solid-liquid interface in a model ordered alloy. Our results show that the studied interface is a smooth interface. Due to the coexistence of structural order and chemical order, the structure of this interface is remarkably different from heterogeneous or pure element solid-liquid interface. The number density oscillates in a complicated way along the interface normal direction, and this oscillation goes into liquid around 30 Å. The two-dimensional structural analysis shows that the atoms form two-dimensional ordered clusters in the transition layer. The diffusion constant gradually increases from zero to a saturation value in the liquid side far from the interface. In the vicinity of the interface, the diffusion constant parallel to the interface direction is large than that along interface normal.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献