Density functional theory studies of O2 and CO adsorption on the graphene doped with Pd

Author:

Sun Jian-Ping ,Miao Ying-Meng ,Cao Xiang-Chun ,

Abstract

Based on density functional theory, the single O2 and CO adsorption on pristine and palladium (Pd) doped graphene are studied using first-principles calculations. By calculating the system adsorption energy, charge transfer, band structure and density of states (DOS), we find that compared with O2 and CO adsorbed on the pristine graphene, the Pd doped systems have high adsorption energies and large charge transfers. The reason is that the new energy levels which are brought into pristine graphene by the dopant Pd strengthened the interaction between graphene and the adsorbed gas molecule. Oxidizing gas O2 and reducing gas CO have obviously different effects on band structure and DOS of graphene. The DOS near the Fermi level of graphene has great change after adsorbing O2 and the change becomes smaller when O2 is adsorbed on Pd doped graphene, while there is almost no change in DOS when graphene adsorbs CO, which indicates that doping Pd on graphene adsorbing CO will not enhance the gas sensitivity. However, the adsorption energy increases, which can improve the gas sensing response speed when graphene adsorbs reducing gas.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3