Differential compressive correlated imaging

Author:

Bai Xu ,Li Yong-Qiang ,Zhao Sheng-Mei ,

Abstract

Correlated imaging offers great potentiality, with respect to standard imaging, to obtain the imaging of objects located in optically harsh or noisy environment. It can solve the problems which are difficult to solve by conventional imaging techniques. Recently, it has become one of the hot topics in quantum optics. In this paper, we propose a new scheme of correlated imaging with differential correlated imaging based on compressive sensing, named differential compressive correlated imaging. The new scheme takes advantage of the high signal-to-noise ratio of the differential correlated imaging and low-imaging sampling frequency of the compressed sensing technique. In the scheme, we utilize the intensity of the thermal light, which is in line with the Gaussian distribution, as the measurement matrix of compressive sensing. We extract the differential object information as the image object information which could be recovered via orthogonal matching pursuit algorithm with high quality. By numerical simulations, we verify the proposed scheme. Here, we select the two gray-scale images, such as double-slit and NUPT, as well as the two multi-grayscale images (Lena and Boats) as the object. We take sampling 350 times in differential compressive correlated imaging for measurement. The numerical simulation results show that for the above image objects, the average mean-square error (MSE) over 10 times for the differential compressive correlated imaging scheme is reduced by 97.7%, 93.9%, 92.5% and 71.4% respectively with respect to that of the differential correlated imaging scheme. Moreover, compared with the compressive ghost imaging, the MSE value of the same double-slit in CDGI, as well as Lena and Boats under the same conditions, is reduced by 50.4%, 72.9% and 66.8% separately, which indicates that the compressive differential correlated imaging scheme can greatly improve the signal-to-noise ratio of the imaging, and significantly reduce the imaging time.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3