Analysis of noisy chaotic time series prediction error

Author:

Wang Xin-Ying ,Han Min ,Wang Ya-Nan ,

Abstract

For the noisy chaotic series prediction problem, traditional methods are quite empirical, and are lacking in the analysis of the composition of the prediction error, thereby ignoring the the difference between chaotic dynamics reconstruction and prediction model. Based on the composition of actual prediction error, the predictor bias error and input disturbance error are defined in this paper and two kinds of global forecasts, ensemble least-square method and regularization method are analysed. It is shown that the ensemble least-square method is suitable for the reconstruction of chaotic dynamics, but has a greater influence on the predictor error. On the other hand, the regularization method can improve the sensitivity of the predictor, but it can be influenced by the input perturbation error. Two simulation examples are used to demonstrate the difference between the chaotic dynamical reconstruction and the establishment of prediction model, and to compare the ensamble least-square method and the regularization method, and at the same time indicate that the actual prediction error is influenced both by the input disturbance error and by the predictor error. In practice, a balance should be stricken between the two, in order to optimize the model prediction accuracy.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference22 articles.

1. Karunasinghe D S K, Liong S Y 2006 J. Hydrol. 323 1

2. Zhao P, Xing L, Yu J 2009 Phys. Lett. A 373 25

3. Molkov Y I, Mukhin D N, Loskutov E M, Timushev R I, Feigin A M 2011 Phys. Rev. E 84 3

4. Leung H, Lo T, Wang S 2001 IEEE Trans. Neural Netw. 12 5

5. Chen D Y, Liu Y, Ma X Y 2012 Acta Phys. Sin. 61 10 (in Chinese) [陈帝伊, 柳烨, 马孝义 2012 物理学报 61 10]

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3