Feedback compensation control on chaotic system with uncertainty based on radial basis function neural network

Author:

Zeng Zhe-Zhao ,

Abstract

For the problem of controlling uncertain chaotic systems, a method of feedback compensation control based on the radial basis function neural network (RBFNN) is studied. In the proposed method, dynamic properties of chaotic system is first trained by RBFNN, and then feedback compensation control for chaotic system is implemented using trained good RBFNN model. The characteristics of this method is that this method can quickly track any given reference signal with on requirement for any mathematic model of controlled chaos system. The numerical simulation results show that the proposed control method not only has the fast response speed, high control accuracy, but also has a stronger ability to suppress parameter perturbation and to resist interference to chaos system.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3