Author:
Sheng Juan-Juan ,He Xing-Dao ,Liu Bin ,Li Shu-Jing ,
Abstract
We present a novel structure of two-dimensional (2D) hexagon-lattice photonic crystal with asymmetrical scatterers-Taiji-shaped scatterers. The properties of photonic band gap (PBG) and the influence of parameter on absolute photonic band gap are analyzed by plane wave expansion method. The calculation results demonstrate that the reduction of scatterer symmetry can produce an increase in the number of PBG and a broadening of PBG width for both TE and TM model, which is conducive to obtaining wider and more absolute PBG. By optimizing the parameters of structure, we obtain the widest absolute PBG 0.0541(ωa / 2πc) at ε = 17, R= 0.38 μm, r=0.36R, and θ = 0° and the maximum of 8 absolute PBGs at ε = 16, R=0.44, r=0.2R, and θ = 0°.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献