Mechanical stress in superconducting coils during winding process

Author:

Li Lan-Kai ,Wang Hou-Sheng ,Ni Zhi-Peng ,Cheng Jun-Sheng ,Wang Qiu-Liang , ,

Abstract

In order to increase the filling factor of conductor in superconducting coils and improve the mechanical stability of superconducting magnet, the pre-tension is always applied to the conductor during winding the coils. Because the winding pre-tension has a great effect on the quench and degradation performance of superconducting magnet, it is necessary to analyze the mechanical stress caused by the fabrication. First, the winding physical process of conductor is analyzed. Then the theoretical model is developed to calculate the winding stress of superconducting coils based on some reasonable assumptions and approximations. And some formulas used for stress and strain are derived from the theory of elastic mechanics. Two kinds of superconducting coils (one consists of one type of wire, and the other one consists of two types of wires.) are researched according to the model. The effects of winding pre-stress and material anisotropy on radial stress and hoop stress in superconducting coils are also analyzed. On the basis of the analyzed results, one can further research the stress and strain of superconducting coils under the effect of multiphysics and give some theoretical suggestions for the design and construction of superconducting coils.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Pretension Bending of Layer Coil for 15 T DC Magnet;IEEE Transactions on Applied Superconductivity;2024-08

2. An electrometric method for the interface stress and contact resistance of pancake coil under winding force;Review of Scientific Instruments;2023-01-01

3. Winding Technology and Experimental Study on 500 kV Superconductive Fault Current Limiter;IEEE Transactions on Applied Superconductivity;2018-04

4. Manufacture and Cryogenic Experiment of 9.4-T MRI Full-Size Dummy Coils;IEEE Transactions on Applied Superconductivity;2016-06

5. Preliminary Mechanical Analysis of a 9.4-T Whole-Body MRI Magnet;IEEE Transactions on Applied Superconductivity;2015-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3