Studies on C22 radical by optical emission spectroscopy in an induc tively-coupled CF44/CH44 plasma

Author:

Huang Song ,Xin Yu ,NingZhao-Yuan ,

Abstract

In this paper, actinometric optical emission spectroscopy (AOES) is used to inve stigate the discharge of CF44 and CH44 mixtures. Relat ive concentratio ns of radicals in an inductively_coupled plasma are determined as functions of rf input power, pressure and the gas flow ratio R (R=[CH44]/{[CH 44]+[CF44]}). It is found that CF,CF22 ,CH,H and F radicals exis t in the CF44/CH44 plasma as well as C22 radical. The relative co ncentration of C22 increases with increasing power, and shows a rev erse “U” shape tendency with increasing pressure. As R increases, the variati on of the relative concentration of C22 is not monotonical. It reac hes a ma ximum value when R=75%, then decreases followed by almost no change with the further increase of R. Based on these results, it is concluded that gas_pha se reaction from the reaction of CF and CH (CF+CH→C22+HF ) contribu tes to the production of C22 radical. At the same time, activation reaction model of radical collision is suggested. Result of simulation agrees well with that of experiment.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3