Dynamics of slow electrons transmitting through straight glass capillary and tapered glass capillary

Author:

Wan Cheng-Liang ,Li Peng-Fei ,Qian Li-Bing ,Jin Bo ,Song Guang-Yin ,Gao Zhi-Min ,Zhou Li-Hua ,Zhang Qi ,Song Zhang-Yong ,Yang Zhi-Hu ,Shao Jian-Xiong ,Cui Ying ,Reinhold Schuch ,Zhang Hong-Qiang ,Chen Xi-Meng , , , ,

Abstract

It has been found that the transmission rate of the electrons through insulating capillaries as a function of time/incident charge is not the same as that of the ions. The question arises that by using the electrons, if the negative charge patches can be formed to facilitate the transmission of the following electrons, thereby substantiating that the so-called guiding effect works also for electrons. This study aims to observe the time evolutions of the transmission of electrons through a straight glass tube and a tapered glass capillary. This will reveal the details of how and (or) if the negative charge patches can be formed when the electrons transport through them. In this work, a set of MCP/phosphor two-dimensional detection system based on Labview platform is developed to obtain the time evolution of the angular distribution of the transmitted electrons. The pulsed electron beams are obtained to test our detection system. The time evolution of the angular profile of 1.5 keV electrons transmitting through the glass tube/capillary is observed. The transmitted electrons are observed on the detector for a very short time and disappear for a time and then appear again for both the glass tube and tapered glass capillary, leading to an oscillation. The positive charge patches are formed in the insulating glass tube and tapered glass capillary since the secondary electron emission coefficient for the incident energy is larger than 1. It is due to the fact that fast discharge of the deposited charge leads to the increase of the transmission rate, while the fast blocking of the incident electrons due to the deposited positive charge leads to the decrease of the transmission rate. The geometrical configuration of the taper glass capillary tends to make the secondary electrons deposited at the exit part to form the negative patches that facilitate the transmission of electrons. This suggests that if the stable transmission needs to be reached for producing the electron micro-beam by using tapered glass capillaries, the steps must be taken to have the proper grounding and shielding of the glass capillaries and tubes. Our results show a difference in transmission through the insulating capillary between electrons and highly charged ions.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3