Analysis of criticality benchmark experiments with beryllium reflectors

Author:

Hu Ze-Hua ,Yin Yan-Peng ,Ye Tao , , ,

Abstract

Beryllium is an important nuclear material, and the reliability of the data for neutron-induced nuclear reactions of beryllium is of significant importance for nuclear engineering. The evaluated nuclear data for beryllium have been improving from ENDF/B-VI to ENDF/B-VⅡ.0 and then to ENDF/B-VⅡ.1. The comparisons between the calculated and experimental results of the criticality benchmark experiments are the essential means to test the reliability of nuclear data and indicate the direction of the improvement of nuclear data. There are several series of criticality benchmark experiments with beryllium reflector available for testing beryllium nuclear data. However, the calculated results are not consistent across these benchmarks. Two series of these benchmarks that are similar to each other, namely HMF058 and HMF066, are selected for discussion. HMF058 and HMF066 are both highly enriched metal fast benchmarks, with five cases of experiments in HMF058 benchmark and nine in HMF066. With ENDF/B-VⅡ.1 cross sections, a clearly increasing C/E keff bias is observed with increasing beryllium reflector thickness for the five cases in HMF058 benchmark, while using ENDF/B-VⅡ.0 cross sections, all the C/E values for keff remain within the experimental uncertainty. However, HMF066 are calculated very well with ENDF/B-VⅡ.1 cross sections, but a bias of about 500 pcm is observed with ENDF/B-VⅡ.0 data. These results are particularly puzzling since there is little difference between the configurations of HMF058 and HMF066, so the quality of beryllium nuclear data cannot be evaluated and the direction for improvement cannot be figured out either. The similarity method, based on the use of sensitivity coefficients calculated by sensitivity and uncertainty code SURE, is used to analyze the similarity between two series of benchmark experiments. First, the neutronics similarity index between each pair of the total of fourteen cases of experiments from the two benchmarks is calculated. Then, the most similar experiments from HMF066 to each case of the five experiments from HMF058 are selected by similarity index, and the experiments are grouped into five similarity suites, each with one from HMF058 and the others from HMF066. The experiments in the same similarity suite are highly similar to each other on neutronics. In a similarity suite, the deviations of calculated results and experimental values are disagreed for experiments from different series, but the deviations agree with each other for experiments from the same series. This shows that the agreement between the calculated results and experimental values cannot be improved by revising the nuclear data. It is necessary to carry out the detailed reevaluation of the benchmark experiments, or to develop reliable new integral experiments to exclude unreliable experiments, in order to avoid the misleading of the nuclear data testing.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference11 articles.

1. Trkov A, Herman M, Brown D A 2012 ENDF-6 Formats Manual (USA:National Nuclear Data Center Brookhaven National Laboratory) Report BNL-90365-2009 Rev. 2(CSEWG Document ENDF-102)

2. Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda S, Chiba S, Furutaka K, Otuka N, Ohsawa T, Murata T, Matsunobu H, Zukeran A, Kamada S, Katakura J 2011 J. Nucl. Sci. Technol. 48 1

3. Koning A J 2011 J. Korean Phys. Soc. 59 1057

4. Ge Z G, Zhao Z X, Xia H H 2011 J. Korean Phys. Soc. 59 1052

5. Zabrodskaya S V, Ignatyuk A V, Koscheev V N 2007 VANT, Nuclear Constants 1-2 3

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3