Simultaneous measurement on strain and temperature via guided acoustic-wave Brillouin scattering in single mode fibers

Author:

Deng Chun-Yu ,Hou Shang-Lin ,Lei Jing-Li ,Wang Dao-Bin ,Li Xiao-Xiao ,

Abstract

During the last decade, fiber sensor has drawn extensive attention due to its flexible, insulating, and readily operating in most measurement environment. But generally, fiber sensor is sensitive to more than one environmental parameter at the same time, so the cross sensitivity limits the application of the sensor. In the present work, a novel design scheme of sensing simultaneously temperature and strain via guided acoustic-wave Brillouin scattering is proposed for resolving the cross sensitivity induced by temperature and strain in single mode fibers. In the guided acoustic-wave Brillouin scattering which occurs due to the interaction between two optical co-propagating waves and the transverse acoustic wave in optical fiber, multi spectrum peaks appear when the frequencies of pump and Stokes are appropriate. Brillouin frequency shift is dependent on elastic property of fiber material such as sound velocity, density, Young's modulus, etc. and these elastic properties are influenced by the surroundings. So Brillouin spectrum changes with temperature and strain. Because different acoustic modes of guided acoustic-wave Brillouin scattering have different sensitivities to temperature and strain, characteristic frequencies of different acoustic modes shift at different levels. Then the influences of temperature and strain on elastic property of fiber material, and the relationship between material properties and characteristic frequency of each acoustic mode can be worked out, therefore the temperature and strain can be calculated by the different influences of temperature and strain on each acoustic mode. The simulation results indicate that the temperature sensitivity of R02 mode is 0.86% lower than that of TR25 in the SMF-28 fiber, but the strain sensitivity of R02mode is 54.1% higher than that of TR25. Temperature sensitivity of R02 is approximately equal to that of TR25, but strain sensitivity of R02 is obviously diferent from that of TR25. So the influences of temperature and strain on Brillouin frequency shift can be effectively distinguished, thereby simultaneous measurements of temperature and strain can be realized by guided acoustic-wave Brillouin scattering.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3