A fast algorithm with convergence for channel estimation in multi-user uplink amplify-and-forward relay system

Author:

Lin He-Yun ,Yuan Chao-Wei ,Du Jian-He , ,

Abstract

Recently,tensor models (or multi-way arrays) play a vital role in many applications,such as wireless communication systems,blind source separation,machine learning,signal (audio,image,speech) processing,chemometrics,data mining, arithmetic complexity,environmental sciences,etc.Parallel factor (PARAFAC) analysis,also known as canonical polyadic decomposition,is a common name for low rank decomposition of tensors.A traditional way to fit the PARAFAC model is the alternating least squares (ALS) algorithm,which can transform a nonlinear optimization problem into some independent linear least squares problems.However,the ALS scheme for computing the decomposition of the tensor is known to converge slowly if one or some modes include nearly collinear columns.Particularly,if the collinearity is presented in all modes,the ALS will end in a convergence bottleneck.Hence,it is necessary to develop a robust and fast algorithm to compute the decomposition of the tensor.In this paper,a novel channel estimation algorithm using the Levenberg Marquardt (LM) method based on a third-order tensor model is presented in a multi-user uplink amplify-and-forward (AF) relay system.As the relay nodes all operate with half-duplex mode to aid the transmission,the overall transmission period is partitioned into two transmission subprocesses.In the first transmission sub-process,the users transmit channel training sequence to the relay nodes.This stage requires time block once.During the second transmission sub-process,a set of diagonal amplifying factor matrices are utilized by the relay nodes to amplify the received data.Then,the relay nodes transmit each of the amplified data to the base station.This stage requires time blocks K times.With the help of the channel training sequence and the relay amplifying factor matrices,the received data at the base station can be stacked up into a third-order PARAFAC model. And then based on this tensor model an LM channel estimation algorithm is proposed to provide the individual channel state information of both user-to-relay and relay-to-base station channel links.As the channel sequence is transmitted by the users only once,the proposed scheme has a higher spectral efficiency than the case that the channel sequence is transmitted K times by the users.Numerical experiments are shown to demonstrate the efficacy of the proposed LM channel estimation algorithm.The results are as follows.Firstly,the LM approach has the same channel estimation performance as the bilinear alternating least-squares method.Secondly,the proposed estimator yields much faster convergence speed when the relay amplifying factor matrix is a random matrix or a highly collinear one.Finally,the proposed scheme performs well in both independent identically distributed channels and correlated channels scenarios,which means that the proposed channel estimator can provide the robust and reliable feature for multi-user uplinks AF relay systems.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3