Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure

Author:

Wang Guan ,Hu Hua ,Wu Kang ,Li Gang ,Wang Li-Jun ,

Abstract

High-performance vertical vibration isolators are required in precision instruments and physical experiments to reduce the seismic noise, which limits the instrument performance and measurement results. For example, inertial references are needed in interferometric gravitational wave detectors and absolute gravimeters, in order to separate the useful signal from noise. Microseisms typically occur at around 0.07 Hz. The secondary microseisms occur at about 0.14 Hz. Buildings usually wobble at frequencies between 0.1 and 1 Hz. To reduce all these vibrations would require a spring-mass system with a resonance frequency lower than 0.05 Hz. The most commonly applied techniques use a passive vertical isolation system, which is easy to set up and cheap to build. However, to achieve low cut-off frequency, such as 0.05 Hz, there requires longer than 100 m static deflection for a simple passive isolator, which is impractical in most applications. An ultra-low-frequency active vertical vibration isolator, based on a two-stage beam structure, is proposed and demonstrated in this paper. Two beams are connected to a frame with flexural pivots. The upper beam is suspended from the frame with a normal hex spring. The lower beam is suspended from the upper one by a zero-length spring. The flexural pivots of the upper beam are not vertically placed above the pivots of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to change the effective stiffness. A laser reflectometry is used to detect the angle between the two beams. A laser collimator, a mirror, a beam splitter and an optical detector are fixed to the upper beam, and another mirror is fixed to the lower beam. A laser beam from the collimator is directed to the detector via the mirrors and the beam splitter. The output of the detector is proportional to the angle between the two beams. The minimum detectable angle is 36 nrad. The angle signal is sent to a circuit to generate a control signal, which drives a voice coil mounted between the lower beam and the frame to maintain the angle between the two beams to a fixed value. The isolation system can achieve a natural period of 100 s by carefully adjusting the attachment points of the zero-length spring and the feedback parameters. This type of isolator has a simpler and more robust structure than the famous active vibration isolator-the super spring. The system is promising in applications such as precision instruments and experiments, especially in absolute gravimeters.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3