Research progress in magnetocaloric effect materials

Author:

Zheng Xin-Qi ,Shen Jun ,Hu Feng-Xia ,Sun Ji-Rong ,Shen Bao-Gen , , ,

Abstract

Magnetocaloric effect(MCE) is the intrinsic property of a magnetic material near transition temperature and the magnetic refrigeration based on MCE has been demonstrated as a promising alternative to the conventional gas compression or expansion refrigeration due to its high energy efficiency and environmental friendliness. The development of magnetic refrigeration technology depends on the research progress of magnetic refrigerant materials with large MCEs. Lots of researches of material exploration and material optimization have promoted the progress of magnetic refrigeration technology in recent decades. In this paper, we introduce the basic theory of MCE and the development of refrigeration technology, review the research progress of large MCE materials both in low temperature range and in room temperature range, and specifically focus on the latest progress of some MCE materials. Low temperature MCE materials mainly include those rare earth based materials with low transition temperatures, such as binary alloys(RGa, RNi, RZn, RSi, R3Co and R12Co7), ternary alloys(RTSi, RTAl, RT2Si2, RCo2B2 and RCo3B2), and quaternary alloys(RT2B2C), where R denotes the rare earth and T represents the transition metal. Those materials mainly possess the second-order phase transitions and show good thermal hysteresis, magnetic hysteresis, and thermal conductivities. Room temperature MCE materials are mainly Gd-Si-Ge intermetallic compounds, La-Fe-Si intermetallic compounds, MnAs-based compounds, Mn-based Heusler alloys, Mn-based antiperovskite compounds, Mn-Co-Ge intermetallic compounds, Fe-Rh compounds, and perovskite-type oxides. The above materials usually have the first-order phase transitions and most of these materials possess the large MCEs in room temperature range, therefore they have received much attention home and abroad. Among those room temperature MCE materials, the La-Fe-Si series is considered to be the most promising magnetic refrigerant materials universally and our country has independent intellectual property rights of them. The further development prospects of MCE materials are also discussed at the end of this paper.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3