A simulation study of structural and optical properties in Cu ions implantation single-crystal rutile

Author:

Liu Huan ,Li Gong-Ping ,Xu Nan-Nan ,Lin Qiao-Lu ,Yang Lei ,Wang Cang-Long , ,

Abstract

TiO2 is a versatile functional material in consumer products, such as fabrication of solar cells, light hydrolysis of hydrogen production and optical coating. Technologically, the absorption edge of TiO2 is in the ultraviolet (UV) region, which restrics its applications. Cu doping can solve the crucial problem and extend the absorption edge from the UV to the visible region. The first-principle calculation based on density functional theory with generalized gradient approximation and ultra-soft pseudo-potentials is carried out to investigate the defective rutile TiO2 through using the constructed 222 supercells in which all atoms are allowed to relax. The plane-wave cutoff energy is 340 eV by selecting 223 of k-point in Brillouin zone. O vacancy, Ti vacancy, Cu interstitial, Cu substitutional for Ti and compound defects are all considered. After the structural relaxation, the lattice host is slightly distorted with a little change of the lattice parameters, with out affecting the crystalline phase of rutile. The results show that the valence bands are mostly O 2p states while the conduction bands have mainly Ti 3d properties. The defect of Cu interstitial can bring about two new impurity levels in the energy gap because of Cu 3d states, and the defect of Cu substituted for Ti can also induce two new impurity levels while they are next to the valence band due to the interaction between Cu 3d and nonbonding orbits of O 2p. Ti vacancy can cause the Fermi level energy to lower and produce a new impurity level at the top of the valence band, which will narrow the energy gap. O vacancy can enhance the Fermi level energy and produce a new level at the bottom of the conduction bands, which shows the n-type semiconductor properties. The higher the concentration of Cu substituted for Ti, the larger the band gap is. It is due to the strong interaction between Ti 3d and Cu 3d, which makes the conduction band move to higher energy. Different compound defects have different influences. Cu interstitial and O or Ti vacancies induce new impurity levels within the band gap, which narrows the gap. Meanwhile, interstitial Cu and vacancies can also interact with each other. The hybridization between Cu 3d and nonbonding orbits of O 2p will induce new levels in the rutile with Ti vacancy structure, while nonbonding orbits of Cu 3d develop new levels by itself in the rutile with O vacancy and Cu interstitial. The Analysis the band structure of rutile with compound defects, shows that the rutile with O vacancy and Cu interstitial effectively affects influenced the absorption edge in visible light range. Cu interstitial, Cu substituted for Ti, O vacancy, Ti vacancy and compound defects can all narrow the band gap and produce a new absorption peak in the visible spectral range. It indicates that rutile with defects will improve the absorption in the visible range and achieve the goal of expanding the absorption range of single-crystal rutile.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3