Test and analysis of the dynamic procedure for electrowetting-based liquid lens under alternating current voltage

Author:

Xie Na ,Zhang Ning ,Zhao Rui ,Chen Tao ,Hao Li-Li ,Xu Rong-Qing , , ,

Abstract

An experimental setup used to measure the important optical properties of electrowetting liquid lens is proposed. The simple and precise method of measuring dynamic responses and focal lengths of liquid lens under different excitation signals is based on Gaussian beam transmission theory. The measurement method can be widely used in all kinds of zoom lens systems. The device is simple and economical, and also has the advantages of convenient operation, high measurement precision and wide range measurement. This work provides a new way to study the dynamic response of electrowetting liquid lens and the the mechanism of electrowetting liquid lens. The fabrication process and some relevant noticeable points for the homemade liquid lens are introduced. The testing device of dynamic process of lens consists of a He-Ne laser, an electrowetting lens, a circular diaphragm, a phototube, a digital storage oscilloscope and a computer. The change of the focal length of liquid lens due to the applied voltage will affect the flux detected by the photoelectric receivers. It is proved according to Gaussian beam transmission theory that the light flux received by the phototube changes with time, which represents the relationship between the focal length and time and the dynamic characteristics of the liquid lens. Therefore, the intensity of output signal of photoelectric receiver reflects the focal length of liquid lens. A dynamic changing process of the focal length of a self-regulating varifocal liquid lens based on electrowetting technology is tested under alternating current signal. It shows that the focal length of the liquid lens changes with the corresponding amplitude and polarity of the sine voltage. In one cycle, 4 peak signals of 50 Hz appear in turn, and the peak amplitude increases with the increase of voltage. Peaks 1 and 2 are caused by the voltage polarity, while peaks 3 and 4 by the oscillation modes. This is due to the fact that the liquid surface changes with time in the spherical shape under low voltage, but it will generate new oscillation mode when the amplitude is high.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3