Ballistic thermal rectification in the three-terminal graphene nanojunction with asymmetric connection angles

Author:

Gu Yun-Feng ,Wu Xiao-Li ,Wu Hong-Zhang ,

Abstract

By using the nonequilibrium Green's function method, the ballistic thermal rectification in the three-terminal graphene nanojunction is studied. The dynamics of atoms is described by the interatomic fourth-nearest neighbor force-constant model. The nanojunction has a Y-shaped structure, created by a combination of a straight graphene nanoribbon and a leaning branch as the control terminal holding a fixed temperature. No heat flux flows through the control terminal. There exists a temperature bias between the two ends of the graphene nanoribbon serving as the left and right terminals, respectively. The primary goal of this paper is to demonstrate that the ballistic thermal rectification can be introduced by the asymmetric structure with different connection angles between terminals. The control terminal has a smaller connection angle with respect to the left terminal than to the right terminal. The forward direction is defined as being from the left terminal to the right terminal. The results demonstrate that, given the same control temperature and absolute temperature bias, the heat flux in the graphene nanoribbon tends to run preferentially along the forward direction. When the difference between the connection angles increases, the rectification ratio rises. Compared with that of the zigzag graphene nanoribbon, the rectification ratio of the armchair nanoribbon is much sensitive to the direction the control terminal. However, the greatest rectification ratio is found in the zigzag graphene nanoribbon which has a connection angle of 30 degrees with respect to the armchair branch. In addition, the direction of the control terminal can be adjusted to raise more than 50% of the rectification ratio of the graphene thermal rectifier based on the width discrepancy between the left and right terminals. The mechanism of the ballistic thermal rectification is also discussed. In the three-terminal graphene nanojunction, a smaller connection angle with respect to the control terminal leads to more phonon scatterings. The confirmation of this conclusion comes from a comparison of phonon transmission between different couples of terminals, which shows that in most of the frequency spectrum, the phonon transmission between the control terminal and the left terminal is smaller than between the control terminal and the right terminal. Given the same control terminal temperature and temperature bias, the asymmetric connection angles therefore will introduce a higher average temperature of the left and right terminals, and a larger heat flux in the forward process. Moreover, the average temperature difference between in the forward process and in the reverse process is found to be proportional to the temperature bias, and the proportionality coefficient will become bigger if the asymmetry is strengthened.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3