Extraordinary transmission of light enhanced by exciting hybrid states of Tamm and surface plasmon polaritions in a single nano-slit

Author:

Lu Yun-Qing ,Cheng Xin-Yi ,Xu Min ,Xu Ji ,Wang Jin ,

Abstract

Extraordinary optical transmission (EOT) through a metallic nano-slit or nano-slit arrays has become an efficient method to manipulate the light on a subwavelength scale. While a variety of nano-devices based on surface plasmon polaritons (SPPs) could be an ideal candidate for the next-generation ultra-compact integrated photonic circuits, this EOT phenomenon is also generally attributed to the excitation of SPPs in the nano-slit. Thus, due to its being compact in structure and amenable to integrate with other nano-devices, single nano-slit can be implemented to construct an optical source in the nano-device based on SPPs. However, the transmission through an isolated nano-slit is too low to be practically used. The main reason is that the excitation efficiency of SPPs in the nano-slit is not high enough. In fact, one of the key issues is how to enhance the excitation efficiency in a nano-slit. In this paper, a novel method and the related structure are proposed to effectively enhance the EOT in a single nano-slit by improving the excitation efficiency of SPPs. This structure is made up of a silver film on a distributed Bragg reflector (DBR), where a single nano-slit is imbedded in the silver film. Under the illumination of a TM polarized light from the DBR side of this structure, the Tamm plasmon polaritons (TPPs) at the interface between the silver film and the DBR and the SPPs in the nano-slit can be excited simultaneously. The TPP is another surface mode, which describes how an electromagnetic field is localized at the boundary of silver film and the DBR. In this structure, coupling between the TPPs and the SPPs leads to the appearance of a TPP-SPP hybrid state. When the wave-vectors between the TPP and the SPP modes are matched, due to the local field enhancement of the TPP mode, the excitation efficiency of SPPs can be improved significantly. Furthermore, utilizing the quasi Fabry-Pérot (F-P) resonance in the nano-slit, where a single nano-slit can be regarded as an F-P cavity with two open ends, a high light transmission through the single nano-slit can be achieved. In the present paper, the transmission properties of the “DBR-silver nano-slit” structure are analyzed with the finite element method and the transfer matrix method. After optimizing the structure parameters, with a thickness of the silver film of 100 nm and a width of the nano-slit of 11 nm, the light transmission through the single nano-slit in this structure can be increased by about 16 times, in comparison with the light transmission through a single nano-slit in a silver film on the TiO2 substrate (without DBR). This method of enhancing the light transmission through a single nano-slit by exciting TPPs mode and utilizing its local field enhancement property, has potential applications in the polariton lasers, the nano-scale photonic integration, the near-field imaging and sensing, and other relevant areas.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3