Average degree under different network sizes for random birth-and-death networks

Author:

Zhang Xiao-Jun ,Zhong Shou-Ming ,

Abstract

In the social and biological networks,each agent experiences a birth-and-death process.These evolving networks may exhibit some unique characteristics.Recently,the birth-and-death networks have gradually caught attention,and thus far,most of these studies on birth-and-death networks have focused on the calculations of the degree distributions and their properties.In this paper,a kind of random birth-and-death network (RBDN) with reducing network size is discussed,in which at each time step,with probability p(0pq=1-p.Unlike the existing literature,this study is to calculate the average degrees of the proposed networks under different network sizes.First,for the reducing RBDN,the steady state equations for each node's degree are given by using the Markov chain method based on stochastic process rule,and then the recursive equations of average degree for different network sizes are obtained according to these steady state equations.Second,by means of the recursive equations,we explore four basic properties of average degrees as follows:1) the average degrees are limited,2) the average degrees are strictly monotonically increasing,3) the average degrees are convergent to 2mq,and 4) the sum of each difference between the average degree and 2mq is a bounded number.Theoretical proofs for these four properties are also provided in this paper.Finally,on the basis of these properties,a generation function approach is employed to obtain the exact solutions of the average degrees for various network sizes.In addition to the theoretical derivations to the average degrees,computer simulation is also used to verify the correctness of exact solutions of the average degrees and their properties.Furthermore,we use numerical simulation to study the relationship between the average degree and node increasing probability p.Our simulation results show as follows:1) with the increasing of p,the convergent speed of the average degree to 2mq is increasing;2) with the increasing of m,the convergent speed of the average degree to 2mq is decreasing.In conclusion,for the proposed RBDN model,the main contributions of this study include 1) providing the recursive equations of the average degrees under different network sizes,2) investigating the basic properties for the average degrees,and 3) obtaining the exact solutions of the average degrees.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3