Optimization of the 3-inch photomultiplier tube for the neutrino detection

Author:

Guo Le-Hui ,Tian Jin-Shou ,Lu Yu ,Li Hong-Wei , , , ,

Abstract

Photomultiplier tubes (PMTs) widely used in neutrino detectors are critical to reconstructing the direction of the neutrino accurately. Large photocathode coverage, compact design and good time properties for single-photoelectron light are essential performances to meet the requirements for the next generation detectors. Therefore, a novel digital optical module housing 31 3-inch. diameter PMTs is developed. In order to maximize the effective photocathode area and improve the time performance, a modified PMT with a larger photocathode area and 10 dynodes is optimized with the aid of the CST Particle Studio in this paper. Based on the Monte Carlo method and finite integration theory, the main characteristics of the modified PMT, such as uniformity, collection efficiency, gain and transit-time spread, are investigated. As the earlier stages of the PMT contribute the greatest weight to the total transit time spread, the transit time spread of single-photoelectron from photocathode to the first dynode (TTSCD1) is discussed mainly in this paper. The influences of the dynodes position on collection efficiency and TTSCD1 are analyzed. The voltage ratio scheme is also optimized slightly to obtain better collection efficiency and minimum TTSCD1. By tracing the trajectories of secondary electrons from the first to the second dynode stage, dynodes are optimized for improving timing performance and secondary electrons collection efficiency. Direct collection efficiency of secondary electrons from the first dynode to the second is improved from 56.38% to 61.01%. The effective photocathode diameter of the modified PMT is increased from traditional 72 mm to 77.5 mm and the effective area of photocathode is increased by 30.87% compared with the traditional one. What is more, the length of the new PMT is reduced to 103 mm so that the available space of the multi-PMT digital optical module is increased by 63.09% compared with the traditional one containing the high-voltage power supplies, front-end and readout electronics, refrigerating equipment, etc. The simulation results show that the mean collection efficiency of the modified PMT is ~96.40% with the supply voltage of 1000 V and it changes little by changing the supply voltage from 900 V to 1300 V. The mean transit time spread from photocathode to the first dynode is ~1 ns which is better than the transit time spread of the traditional model. And the gain can reach above 106 with a supply voltage of above 1100 V.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference23 articles.

1. Fukuda Y, Hayakawa T, Ichihara E, et al. 1998Phys. Rev. Lett. 81 1158

2. Araki T, Enomoto S, Furuno K, et al. 2005Nature 436 499

3. Cao J 2014Sci. Sin.:Phys. Mech. Astron. 44 1025(in Chinese)[曹俊2014中国科学:物理学力学天文学44 1025]

4. Fukuda S, Fukuda Y, Hayakawa T, et al. 2003Nucl. Instrum. Meth. A 501 418

5. Katz U F, Spiering C 2012Prog. Part. Nucl. Phys. 67 651

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance improvement of a discrete dynode electron multiplication system through the optimization of secondary electron emitter and the adoption of double-grid dynode structure;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3