New formula for calculating the fidelity of teleportation and its applications

Author:

Jia Fang ,Liu Cun-Jin ,Hu Yin-Quan ,Fan Hong-Yi , , ,

Abstract

Quantum teleportation plays an important role in quantum information science. In order to obtain the effect of quantum teleportation of a quantum state by using an entangled resource, the fidelity of teleporting the quantum state should be calculated. Braunstein and Kimble[Phys. Rev. Lett. 80 869 (1998)] derived a formula of calculating the fidelity of quantum teleportation for Gaussian entangled resource and any input state to be teleported. Then, the point is how to calculate the quantum teleportation fidelity for any entangled resource. In this paper, werealize this purpose by using the entangled state representation. First, we derive the Weyl expansion of any density operator by using the completeness relation between coherent state and P-representation. Then using the orthogonal property of entangled state representation and the traditional Kimble-Braunstein scheme of quantum teleportation, we further derive the mean density operator of the output state, which means that we establish the relation between the output density operator and the characteristic functions of the input state to be teleported and the entangled resources. The characteristic function of the output state is also derived which is in the concise form relating these two characteristic functions above. Then we further obtain a new formula for calculating the quantum teleportation fidelity for the coherent state input and any two-mode entangled resource. It is shown that the fidelity of teleportation can be easily calculated when the Q-function of the normally ordering form of entangled resource is known. This is a convenient way of obtaining the fidelity of teleportation. As its applications, some Gaussian and non-Gaussian entangled states are examined to teleport the coherent state, whose results are correct.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3