Highly stable and self-started all-fiber Yb3+ doped fiber laser mode-locked by chirped pulse spectral filtering and nonlinear polarization evolution

Author:

Zhang Pan-Zheng ,Wang Xiao-Chao ,Li Jing-Hui ,Feng Tao ,Zhang Zhi-Xiang ,Fan Wei ,Zhou Shen-Lei ,Ma Wei-Xin ,Zhu Jian ,Lin Zun-Qi , ,

Abstract

Without discrete optical components influencing the fiber format, all-fiber mode-locked laser has tremendous potential practical applications due to its advantages of better stability, alignment free, and better compaction. All-fiber laser mode-locked by nonlinear polarization evolution(NPE) can obtain good performances in terms of pulse duration and spectrum. But the effective saturable absorption mirror can be overdriven at high peak power, which leads to multiple pulses, limiting the output pulse energy. And there is a trade-off between avoiding overdriving the NPE and ease of self-starting. In addition, the polarization of the pulse propagating in a long fiber is so sensitive to the environment vibration that it is difficult to implement a stable lone-time operation.All-fiber ring laser mode-locked by NPE alone is analyzed and realized. The simulation results show that even a polarization vibration of up/38 can break the mode-locking completely. Experimentally, after carefully adjusting, single-pulse mode-locking is achieved with the spectrum centered at 1053.4 nm and a maximum pulse energy of 82 pJ. But the output parameters change continually during operating. After 60 min, the mode-locking is broken. The conclusion is obtained that instability and unreliability of self-starting are inevitable for such a laser.Here, we show significant improvements of the pulse energy, operating stability, and self-starting reliability from an all-fiber Yb-doped mode-locked fiber laser. The laser is mode-locked by NPE combined with chirped pulse spectral filtering(CPSF). In order to easily self-start and stabilize mode locking, a spectral filter is employed in the all-normal group velocity dispersion NPE cavity to provide additional amplitude modulation. Combined effects of NPE and CPSF result in desirable pulse output, desirable operating stability, and reliable self-starting simultaneously. Stable mode-locking centered at 1053 nm is achieved with a 3 dB spectral bandwidth of 9.1 nm and pulse duration of 17.8 ps. The average output power is 66.9 mW at a repetition rate of 15.2 MHz, corresponding to a pulse energy of 4.25 nJ. Especially, high operating stability and easily one-button self-starting are achieved simultaneously. The fluctuations of output parameters including pulse energy, pulse duration, and spectrum are within 0.3% during 150-min operation. Self-starting reliability is tested. The testing time lasts two weeks. During the two weeks, the laser is turned off and turned on 48 times by using a power supplying button, without any adjustment. And the re-turned on intervals change randomly. Each time, the mode-locking can start itself. The repeatabilities of output parameters including pulse energy, pulse duration, and spectrum are within 0.55%.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference22 articles.

1. Dawson J W, Liao Z M, Jovanovic I, Wattellier B, Beach R, Payne S A, Barty C P J 2003 Proc. SPIE UCRL-JC-152561

2. Dawson J W, Liao Z M, Mitchell S, Messerly M, Beach R, Jovanovic I, Brown C, Payne S A, Barty C P J 2005 Proc. SPIE UCRL-CONF-209779

3. Yang L Z, Chen G F, Wang Y S, Zhao W, Ding G L, Xiong H J 2005 Chin. J. Lasers 32 153(in Chinese)[杨玲珍, 陈国夫, 王屹山, 赵卫, 丁广雷, 熊红军2005中国激光32 153]

4. Lin H H, Sui Z, Li M Z, Wang J J 2006 High Power Laser and Particle Beams 18 825(in Chinese)[林宏奂, 隋展, 李明中, 王建军2006强激光与粒子束18 825]

5. Gu Q Y, Hou J, Cheng X A, Xu X J 2008 Chin. J. Lasers 3 5(in Chinese)[谷庆元, 侯静, 程相爱, 许晓军2008中国激光3 5]

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3