Structure of BP3S monolayer on Au(111)

Author:

Li Bai ,Wu Tai-Quan ,Wang Chen-Chao ,Jiang Ying ,

Abstract

The first-principle technique is employed to determine the structure of the BP3S monomer, the structures of the molecular chains and monolayers on virtual Au(111), and the atomic structure of BP3S/Au(111) adsorption system. The results show that the BP3S monomer presents a symmetric structure, and the angle between two benzene rings is 3510. At first, many BP3S monomers are assembled into one stable molecular chain in the virtual Au(111), the distance between the neighbor monmers is 0.516 nm, and the bind energy between the monmer and the molecular chain is 0.071 eV. It is a self-assembly system. Then many molecular chains are assembled into two stable monolayers in the virtual Au(111)-(37) and Au(111)-(313), and their coverages are 0.20 ML and 0.14 ML, respectively. In the virtual Au(111)-(37) and Au(111)-(313), the angles between the molecular chains and the virtual surface are 60 and 30, respectively, and the binding energies between the monmer and two monolayers are 0.101 eV and 0.125 eV, respectively. They are both the self-assembly systems. Finally, two monolayers are adsorbed on the Au(111)-(37) and Au(111)-(313) at four adsorption sites. The S atom is easy to obtain two electrons and turn into S2- ion, and the Au atom is easy to lose one electron and become Au+ ion, so the bridge site(two Au+ ions) is more stable than the top site(one Au+ ion), while the hcp and fcc hollow sites(three Au+ ions) are both unstable. In the Au(111)-(37), the chemisorption energy of the bridge site(-1.879 eV) is lower than that of the top site(-1.511 eV). And in the Au(111)-(313), the chemisorption energy of the bridge site(-1.691 eV) is lower than that of the top site(-1.492 eV). The results are confirmed in the other S-Au adsorption systems, such as the C6H13S/Au(111). A comparison between the structures of the BP3S monolayer before and after being adsorbed on Au(111) clearly shows that the structural parameters of the adsorption system depend mainly on the interaction in the monolayer, and that the contribution of Au(111) to the structure of the monolayer is weak. These results are confirmed in the other self-assembly adsorption systems.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference16 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3