Multiple cutoffs in high harmonic generation via multi-XUV-photon absorption

Author:

Yu Zu-Qing ,He Feng ,

Abstract

High harmonic generation (HHG) is one of the most fundamental processes in the interaction of strong laser fields with atoms and molecules. Because of wide applications of HHG, for example, imaging atomic or molecular orbitals, visualizing chemical reactions, synthesizing a single attosecond pulse, the HHG attracts huge attentions in both theories and experiments. The HHG can be explained by the famous three-step model:first, the laser field bends the Coulomb potential and the electron tunnels out; second, the electron is accelerated in the laser field and gains kinetic energy; Third, the energetic electron recombines with the parent ion and release its energy as high energetic photons. The HHG can be tailored by controlling the each step. In this paper, we conceive a strategy to control the third step. We simulate the HHG when He+ is exposed to the combined few-cycle Ti-Sapphire (800 nm) IR femtosecond laser pulse and XUV laser pulse by numerically solving the time dependent Schrdinger equation. The simulation shows that after the electron tunnels out and gains energies from the infrared laser field, extra XUV photons may be absorbed during the electron and parent ion recombination, contributing multiple cutoffs separated by XUV photon energies in the high harmonic spectrum. This scenario is confirmed by time-delay-dependent HHG in the time-frequency representation, and by the power scaling of the cutoffs' intensities as a function of the XUV intensity.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3