Effects of low-temperature annealing on oxygen precipitate nucleation in heavily arsenic-doped Czochralski silicon
-
Published:2008
Issue:11
Volume:57
Page:7108
-
ISSN:1000-3290
-
Container-title:Acta Physica Sinica
-
language:
-
Short-container-title:Acta Phys. Sin.
Author:
Xi Guang-Ping ,Ma Xiang-Yang ,Tian Da-Xi ,Zeng Yu-Heng ,Gong Long-Fei ,Yang De-Ren ,
Abstract
Through the comparative investigation on oxygen precipitation behaviors in the heavily and lightly arsenic-doped n-type Czochralski (CZ) silicon wafers subjected to the two-step annealing successively at low temperature (450—800℃) and high temperature (1000℃), the effects of low-temperature annealing on oxygen precipitate nucleation in heavily arsenic-doped CZ silicon wafer have been elucidated. It was found that for the heavily arsenic-doped CZ silicon the oxygen precipitate nucleation during the 450 and 650℃ annealing was more significant than that during the 800℃ annealing, which was contrary to the case for lightly-doped CZ silicon. Moreover, in comparison with the lightly-doped CZ silicon, the oxygen precipitate nucleation at 450 and 650℃ was enhanced while that at 800℃ was suppressed in the heavily arsenic-doped CZ silicon. It is believed that in the heavily arsenic-doped CZ silicon the As-V-O complexes can be formed during the annealing at 450 and 650℃ so as to enhance the oxygen precipitate nucleation; while, during the 800℃ annealing the As-V-O complexes are not stable enough to act as the precursors of nuclei and, moreover, the heavy arsenic-doping leads to compressive lattice stress, therefore the oxygen precipitate nucleation is noticeably suppressed. Furthermore, it is revealed that the nitrogen-doping facilitates the oxygen precipitate nucleation during the annealing at low temperatures especially at 800℃, which is believed to be due to the heterogeneous nucleation centers induced by nitrogen-doping.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献