Effects of low-temperature annealing on oxygen precipitate nucleation in heavily arsenic-doped Czochralski silicon

Author:

Xi Guang-Ping ,Ma Xiang-Yang ,Tian Da-Xi ,Zeng Yu-Heng ,Gong Long-Fei ,Yang De-Ren ,

Abstract

Through the comparative investigation on oxygen precipitation behaviors in the heavily and lightly arsenic-doped n-type Czochralski (CZ) silicon wafers subjected to the two-step annealing successively at low temperature (450—800℃) and high temperature (1000℃), the effects of low-temperature annealing on oxygen precipitate nucleation in heavily arsenic-doped CZ silicon wafer have been elucidated. It was found that for the heavily arsenic-doped CZ silicon the oxygen precipitate nucleation during the 450 and 650℃ annealing was more significant than that during the 800℃ annealing, which was contrary to the case for lightly-doped CZ silicon. Moreover, in comparison with the lightly-doped CZ silicon, the oxygen precipitate nucleation at 450 and 650℃ was enhanced while that at 800℃ was suppressed in the heavily arsenic-doped CZ silicon. It is believed that in the heavily arsenic-doped CZ silicon the As-V-O complexes can be formed during the annealing at 450 and 650℃ so as to enhance the oxygen precipitate nucleation; while, during the 800℃ annealing the As-V-O complexes are not stable enough to act as the precursors of nuclei and, moreover, the heavy arsenic-doping leads to compressive lattice stress, therefore the oxygen precipitate nucleation is noticeably suppressed. Furthermore, it is revealed that the nitrogen-doping facilitates the oxygen precipitate nucleation during the annealing at low temperatures especially at 800℃, which is believed to be due to the heterogeneous nucleation centers induced by nitrogen-doping.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3