Author:
Qiao Hui ,Liao Yi ,Hu Wei-Da ,Deng Yi ,Yuan Yong-Gang ,Zhang Qin-Yao ,Li Xiang-Yang ,Gong Hai-Mei ,
Abstract
Real-time measurement of γ irradiation effect of Hg1-xCdx Te long-and mid-wavelength focal plane array photodiodes has been carried out. Through measuring the current-voltage characteristic during irradiation process, it has been found that mid-wavelength detectors are more radiation resistant than long-wavelength photodiodes. For long-wavelength detectors, the zero bias resistance, which is usually used to evaluate the performance of photodiodes, decreases with increased γ irradiation dosage. For mid-wavelength detectors, the zero biased resistance does not show a definite changing trend, and the irradiation mainly caused fluctuations of resistance-voltage curves with increased dosage. By numerically simulating the resistance-voltage curves of long-wavelength detectors on the basis of dark current mechanism, it was found that the lifetime ofminority carriers in the generation-recombination process was shortened and thedefects produced by irradiation increased as the dosage increased, and the affected dark current mechanism was mainly the generation-recombination current. Because the irradiated mid-wavelength detectors have much larger carrier mobility and much lower dopant density, and also a bandgap twice that of long-wavelength detectors, they showed a weaker irradiation effect. The fluctuations of the resistance-voltage curves caused by irradiation would lead to an increase on noise of the detectors.
Publisher
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Subject
General Physics and Astronomy
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献