Real-time study of γ irradiation on Hg1-xCdxTe focal plane photodiodes

Author:

Qiao Hui ,Liao Yi ,Hu Wei-Da ,Deng Yi ,Yuan Yong-Gang ,Zhang Qin-Yao ,Li Xiang-Yang ,Gong Hai-Mei ,

Abstract

Real-time measurement of γ irradiation effect of Hg1-xCdx Te long-and mid-wavelength focal plane array photodiodes has been carried out. Through measuring the current-voltage characteristic during irradiation process, it has been found that mid-wavelength detectors are more radiation resistant than long-wavelength photodiodes. For long-wavelength detectors, the zero bias resistance, which is usually used to evaluate the performance of photodiodes, decreases with increased γ irradiation dosage. For mid-wavelength detectors, the zero biased resistance does not show a definite changing trend, and the irradiation mainly caused fluctuations of resistance-voltage curves with increased dosage. By numerically simulating the resistance-voltage curves of long-wavelength detectors on the basis of dark current mechanism, it was found that the lifetime ofminority carriers in the generation-recombination process was shortened and thedefects produced by irradiation increased as the dosage increased, and the affected dark current mechanism was mainly the generation-recombination current. Because the irradiated mid-wavelength detectors have much larger carrier mobility and much lower dopant density, and also a bandgap twice that of long-wavelength detectors, they showed a weaker irradiation effect. The fluctuations of the resistance-voltage curves caused by irradiation would lead to an increase on noise of the detectors.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3