Collective behaviors of globally coupled harmonic oscillators driven by different frequency fluctuations

Author:

Jiang Lei,Lai Li,Yu Tao,Luo Mao-Kang, ,

Abstract

For multi-particle coupled systems, the effects of environmental fluctuations on each particle are often different in actual situations. To this end, this paper studies the collective dynamic behaviors in globally coupled harmonic oscillators driven by different frequency fluctuations, including synchronization, stability and stochastic resonance (SR). The statistical synchronicity between particles' behaviors is derived by reasonably grouping variables and using random average method, and then the statistical equivalence between behaviors of mean field and behaviors of single particle is obtained. Therefore, the characteristics of mean field's behaviors (that is, collective behaviors) can be obtained by studying behaviors of any single particle. Moreover, the output amplitude gain and the necessary and sufficient condition for the system stability are obtained by using this synchronization. The former lays a theoretical foundation for analyzing the stochastic resonance behavior of the system, and the latter gives the scope of adaptation of the conclusions in this paper. In terms of numerical simulation, the research is mainly carried out through the stochastic Taylor expansion algorithm. Firstly, the influence of system size <i>N</i> and coupling strength <inline-formula><tex-math id="M3">\begin{document}$\varepsilon$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210157_M3.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210157_M3.png"/></alternatives></inline-formula> on the stability area and synchronization time is analyzed. The results show that with the increase of the coupling strength <inline-formula><tex-math id="M4">\begin{document}$\varepsilon$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210157_M4.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210157_M4.png"/></alternatives></inline-formula> or the increase of the system size <i>N</i>, the coupling force between particles increases, and the orderliness of the system increases, so that the stable region gradually increases and the synchronization time gradually decreases. Secondly, the stochastic resonance behavior of the system is studied. Noises provide randomness for the system, and coupling forces provide orderliness for the system. The two compete with each other, so that the system outputs about the noise intensity <inline-formula><tex-math id="M5">\begin{document}$\sigma$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210157_M5.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210157_M5.png"/></alternatives></inline-formula>, the coupling strength <inline-formula><tex-math id="M6">\begin{document}$\varepsilon$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210157_M6.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210157_M6.png"/></alternatives></inline-formula> and the system size <i>N</i> exhibit stochastic resonance behavior. As the coupling strength increases or the system size increases, the orderliness of the system increases, and greater noise intensity is required to provide stronger randomness to achieve optimal matching with it, so as to the resonance of the noise intensity <inline-formula><tex-math id="M7">\begin{document}$\sigma$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210157_M7.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210157_M7.png"/></alternatives></inline-formula>, the peak gradually shifts to the right. Conversely, as the noise intensity <inline-formula><tex-math id="M8">\begin{document}$\sigma$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210157_M8.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210157_M8.png"/></alternatives></inline-formula> increases, the resonance peak of the coupling strength <inline-formula><tex-math id="M9">\begin{document}$\varepsilon$\end{document}</tex-math><alternatives><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210157_M9.jpg"/><graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="13-20210157_M9.png"/></alternatives></inline-formula> and the system size <i>N</i> will also shift to the right.

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

Reference58 articles.

1. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U 2006 Phys. Rep. 424 175

2. He W, Cao J 2010 IEEE Trans. Neural Networks 21 571

3. Yang B, Zhang X, Zhang L, Luo M K 2016 Phys. Rev. E 94 022119

4. Ioannou P J, Farrell B F 2006 Application of Generalized Stability Theory to Deterministic and Statistical Prediction (New York: Cambridge University Press) pp113−126

5. Dorf R C, Bishop R H 2010 Modern Control Systems (12th Ed.) (Pearson: Prentice Hall) p387

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3