Radiation properties of radiative shock in xenon

Author:

Zhao Duo,Li Shou-Xian,An Jian-Zhu,Wu Yong,Wu Ze-Qing,Li Qiong,Wang Fang,Meng Guang-Wei, ,

Abstract

<sec>Radiative shock is an important phenomenon both in astrophysics and in inertial confinement fusion. In this paper, the radiation properties of X-ray heated radiatve shock in xenon is studied with the simulation method. The radiative shock is described by a one-dimensional, multi-group radiation hydrodynamics model proposed by Zinn [Zinn J 1973 <i> J. Comput. Phys.</i> <b>13</b> 569]. To conduct computation, the opacity and equation-of-state data of xenon are calculated and put into the model. The reliabilities of the model and the physical parameters of xenon are verified by comparing the temperature and velocity of the radiative shock calculated by the model with those measured experimentally. </sec><sec>The evolution of the radiative shock involves abundant physical processes. The core of the xenon can be heated up to 100 eV, resulting in a thermal wave and forming an expanding high-temperature-core. Shortly, the hydrodynamic disturbances reach the thermal wave front, generating a shock. As the thermal wave slows down, the shock gradually exceeds the high-temperature-core, forming a double-step distribution in the temperature profile. </sec><sec>The time evolution of the effective temperature of the radiative shock shows two maximum values and one minimum value, and the radiation spectra often deviate from blackbody spectrum. By analyzing the radiation and absorption properties at different positions of the shock, it can be found that the optical property of the shock is highly dynamic and can generate the above-mentioned radiation characteristics. When the radiative shock is just formed, the radiation comes from the shock surface and the shock precursor has a significant absorption of the radiation. As the shock temperature falls during expansion, the shock precursor disappears and the radiation inside the shock can come out owing to absorption coefficient decreases. When the shock becomes transparent, the radiation surface reaches the outside edge of the high-temperature-core. Then, the temperature of the high-temperature-core decreases further, making this region also optically thin, and the radiation from the inner region can come out. Finally, the radiation strength falls because of temperature decreasing. </sec>

Publisher

Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3